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E-mail: leo@phy.hr

Received 20 January 2006, in final form 22 March 2006
Published 13 April 2006
Online at stacks.iop.org/JPhysCM/18/4253

Abstract
Surface excitation spectra are calculated, including both collective and single-
particle modes, and examined in detail. This is achieved by calculating the
non-local dielectric function εp(Q, z, z′, ω) of the thin jellium film within
the random phase approximation (RPA) (using local density approximation
wavefunctions which actually takes us beyond the RPA), from which we then
derive the spectral function. The high precision of the calculations enables us to
analyse not only the collective (surface plasmon) modes and their dependence
on the film thickness, but also the intra-band electron–hole excitations, and for
the first time oscillatory structures due to inter-band transitions. The spectra are
then analysed with special attention to their dependence on the slab thickness,
and the periodic peaks observed due to single-particle excitations in the spectra.

1. Introduction

It is well known that the bulk excitations in a metallic slab practically do not produce electric
fields outside the metal because they are almost completely screened. Therefore, in order to
calculate the fields experienced by a charged particle placed outside the metal, it is necessary
to study the surface excitations (collective and single particle) in detail. Such calculations
have been performed by a number of authors [1–23] for various systems and geometries, not
only for a metallic slab but also for semi-infinite metal and metal–vacuum–metal systems.
The results have a wide relevance and they have for example been applied to studies of
the energy loss in EELS (electron energy loss spectra) experiments, electron tunnelling in
semiconductor heterostructures or in STM (scanning tunnelling microscope), calculations of
surface states, etc. In processes where particles are close to the surface, or in systems like
thin metallic slabs or metallic electrodes separated by a narrow gap (as is the case in STM)
the electrons are very close to the surface, so both single-particle and collective excitations
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have to be taken into account, instead of limiting the calculations to the collective modes in
the long-wavelength limit. This can be achieved by deriving the relation between the non-
local interaction propagator W (r, r′, ω), and the non-local dielectric function ε(r, r′, ω) (or
polarizability χ̃(r, r′, ω)), and calculating the dielectric function within the random phase
approximation (RPA) but using the local density approximation (LDA) [1] wavefunctions
(which actually gets us beyond the usual RPA). This approach provides the non-local dielectric
function which is not just a tool for the calculation of the screened interaction propagator, but
is also very useful in determining for example excitation spectra and dispersion relations.

The relation between the non-local interaction propagator and the dielectric function in
this form was first derived by Newns [2], but he only examined in detail the case when points z
and z ′ are both outside the flat metal surface. In our previous work we generalized this method
to the case when the surface is not necessarily flat, but of a general curvature [3], and for the flat
surface we extended this method to situations where one or both points are inside the metal [4].

To calculate the dielectric function (or to obtain the non-local interaction propagator W )
we need to calculate the response function of the metallic slab, and for this we need electron
wavefunctions. Since the electrons are very close to the surface one cannot use the free
electron or even infinite barrier model (IBM) wavefunctions, but we need more realistic jellium
wavefunctions, e.g. Kohn–Sham wavefunctions. They can be obtained by expanding them in
terms of sinusoidal IBM wavefunctions and solving a matrix version of the Kohn–Sham [5]
problem to obtain the expansion coefficients [6], or by solving the Kohn–Sham equation for the
jellium slab numerically [1, 7], as we do here. Our calculation is slightly different from those
presented in [1, 7], and is described in detail in [8].

The wavefunctions (and then the response function and the excitation spectra) can also
be obtained for more realistic models of a crystal, including for example the surface periodic
potential, or more complicated cases, using various ab initio methods [9], but then the system
is not translationally invariant in the direction parallel to the surface but periodic, and the
response function is not be diagonal with respect to the wavevector parallel to the surface
Q, i.e. instead of χqq ′(Q, ω), we have χqq ′(Q, G, ω), which complicates the calculation
tremendously. Such calculations were done, for example to obtain a GW correction of the
LDA exchange–correlation potential [10], or to calculate the dynamical response and plasmon
dispersion for the bulk aluminium [11], and even to examine surface plasmons (SPs) for metal
monolayers [12] and a single metal surface [13], but still not for a slab of finite and variable
thickness. Since we want to examine the influence of the slab thickness on the excitation
spectra we use the jellium model, which has the advantage of being translationally invariant in
the direction parallel to the surface, but still enables a relatively realistic description of charge
fluctuations. Furthermore, the method we use enables us not just to calculate the total spectra,
containing all the excitations in such a slab (as is done in all the aforementioned references
based on the ab initio calculations), but also to separate and clearly distinguish spectral features
due to specific excitations (bulk, surface, odd, even, collective, single particle). Therefore,
we study not only the strong surface plasmon peaks and broad structures due to intra-band
electron–hole transitions, but also the discrete peaks due to inter-band transitions. We also
examine how the peaks in the single-particle excitation spectra are related to the slab thickness
and the energy levels of the bound states within the slab.

2. Formulation of the problem

We study a thin metallic slab in a jellium model, with the thickness varying approximately from
10 to 100 atomic units. The slab is infinite in the ρ = (x, y) plane, and finite in the z direction,
−L < z < 0. We assume that the electron density practically vanishes at the boundaries
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Figure 1. Geometry of the slab, and calculated electron density profile for rs = 2.07. Positive
background extends from −L + a to −a. n(z) is the electron charge density, and n+ is the positive
background charge density.

z = −L and z = 0, with the positive background extending from z = −L + a to z = −a,
i.e. its thickness is d = L − 2a (figure 1).

Therefore, all quantities could be Fourier transformed in the ρ direction as

f (Q, z, z′) =
∫

A
dρeiQρ f (r, r′) (1)

f (r, r′) = 1

(2π)2

∫

dQe−iQρ f (Q, z, z′) (2)

where A is the total surface of the metal and Q is a wavevector parallel to the surface.
The wavefunctions can be written in the form

�ν(r) =
√

2

AL
eiQρφn(z) (3)

where ν = (Q, n) and φn(z) is the self-consistent solution of the one-dimensional Kohn–Sham
equation for the jellium slab. The corresponding energies can be written as

En = h̄2 Q2

2m
+ εn (4)

where m is the electron mass and εn is the ‘perpendicular’ part of the energy, i.e. the eigenvalue
obtained by the solution of the one-dimensional Kohn–Sham equation.

Since our slab is symmetrical with respect to the z = −L/2 plane, we can decompose the
charge fluctuation modes into symmetric (p = +) and antisymmetric (p = −) ones. Moreover,
since in the linear response theory (anti)symmetric modes couple only with (anti)symmetric
external perturbations, it is convenient to decompose our potentials into symmetric and
antisymmetric parts, and treat them separately. That way our system will always have a well
defined symmetry, making it plausible to perform Fourier transforms in the z direction using
the (anti)symmetrical functions

f p
q =

∫ 0

−L
dz f (z) cos qz, f (z) = 2

L

∑

q

ηq f p
q cos qz (5)
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where

q =
{ 2nπ

L , p = +
(2n+1)π

L , p = −
}

n = 0, 1, 2, . . . , ηq = 1 − δq,0

2
.

Index p denotes that the q components of any quantity throughout this paper will have a well
defined (even or odd) parity.

3. Spectral function

While bulk collective modes occur at frequencies for which the dielectric function equals zero,
surface modes can be related to the dielectric function through equation [14, 4]:

Sp(Q, ω) = 1

π
Im

c−pεp(Q, ω) − cp

εp(Q, ω) + 1
cp = 1 − pe−QL . (6)

Here εp(Q, ω) is the surface dielectric function given by [2, 14, 4, 3]

ε−1
p (Q, ω) = 4Q

L

∑

qq ′

[
8πe2

L
χ

p
qq ′(Q, ω) + (Q2 + q2)

δqq ′

ηq

]−1

(7)

where the χ
p

qq ′ are the Fourier components of the irreducible polarizability. Replacing χ by the
polarizability of the non-interacting electrons, (i.e. the Lindhard response function) leads to the
RPA, but here we shall replace χ by χ0, defined as

χ0(r, r′, ω) =
∑

ν,ν′

fν − fν′

Eν − Eν′ − h̄(ω + iη)
�ν(r)�∗

ν′ (r)�ν(r′)�∗
ν′(r′) (8)

with fν = 2�(EF − Eν), where EF is the Fermi energy, �(x) is the Heaviside function,
η is a positive infinitesimal and � are the electron wavefunctions (3). In other words, if �

were the free electron wavefunctions (8) would be the Lindhard response function, but if we
use the Kohn–Sham wavefunctions instead, calculated with the effective potential that includes
electron–electron interaction as well as exchange–correlation potential, it gets us beyond the
RPA.

After Fourier transforming in the ρ direction, and denoting the highest occupied state with
jM , (8) can be written as [17]

χ0(Q, z, z′, ω) =
jM∑

j=1

∞∑

j ′=1

Fj j ′(Q, ω)φ j(z)φ j ′(z)φ j(z
′)φ j ′(z ′) (9)

where Fj j ′(Q, ω) can be calculated analytically [4], and the result is

Fj j ′(Q, ω) = −1

π Q2

[

2a j j ′(Q) + sgn(ω − a j j ′(Q))

√

(ω − a j j ′(Q) + iη)2 − Q2k2
j

− sgn(ω + a j j ′(Q))

√

(ω + a j j ′(Q) + iη)2 − Q2k2
j

]

(10)

where

a j j ′(Q) = h̄

2m
Q2 − ε j − ε j ′

h̄
, k j =

√

2m

h̄
(EF − ε j) (11)

and ε j is the ‘perpendicular’ energy defined in (4).
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Figure 2. Examples of surface excitation spectra: (a) for wavevector Q = 0.05kF and different
slab thicknesses d, (b) for thickness d = 30a0 and different wavevectors Q. Full lines are for even
modes, and dashed lines for odd modes.

4. Results and discussion

As described in the previous section, equation (6) together with equations (7)–(11) give
the spectral functions of even and odd surface excitations in a metallic (jellium) slab. We
performed calculations for rs = 2.07 (where rs is the radius defined by the electron density
as 1/n = (4/3)πr 3

s ) which corresponds to aluminium, slab thicknesses from d = 10a0 to
100a0 (with a = 12a0, where a0 is Bohr radius), for different values of Q varying from 0.01kF

to 0.2kF, and a few examples are shown in figure 2. The spectra are in agreement with the
previously calculated ones [15, 16], and show the usual structure, though with the increase in
precision one can observe some new features. On the other hand, our method enables us to
distinguish various modes observed on these spectra from one another (odd from even, bulk
from surface, single particle from collective), which is not easy when using other methods, so
that we can analyse and interpret the spectra in much more detail.

Let us first discuss the collective modes. Figure 3 shows the wavevector dependence of
the symmetric and antisymmetric surface plasmon peaks, for three different slab thicknesses.
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Figure 3. Dispersion relations of surface plasmons for different slab thicknesses d = 10a0, 50a0,
100a0. Dots are for even modes, and circles for odd modes. The full and dotted lines represent the
classical dispersions of even and odd plasmons, respectively.

Dots and circles represent the values obtained as the maximum values (most prominent peaks)
of even and odd spectra calculated for each wavevector. For comparison we plotted the
classical dispersion relations [18] for such a system (dotted and full lines represent even and
odd branches respectively). In agreement with the result shown in figure 4 of [4], at large Q
we observe the increase of both frequencies above the (classical) asymptotic SP frequency
ωs = ωp/

√
2 (where ωp = 4πne2/m). That is also in agreement with the well known

theoretical results for the dispersion of bulk plasmons and also surface plasmons in semi-infinite
metals, and the measurements performed for such systems [19–22]. For small Q, the measured
dispersion relation [19] decreases, as predicted theoretically [23], which neither agrees nor
disagrees with our result since we study a slab of finite (and actually very small) thickness so
the long-wavelength behaviour is predominantly defined by the geometry of the system, but for
large Q it is in good agreement with our result.

In figure 4 we show the dependence of surface plasmon frequencies on the slab thickness
for various values of the plasmon wavevector Q. As it is well known from the classical
dispersion relations and from the calculated spectra [4, 8], for small Q, even and odd modes
are further apart, while for large Q (approximately Q � 1

L ) they are closer and converge to
a frequency slightly above the long-wavelength SP frequency ωs . Our results show how, for
wider slabs, surface plasmons actually behave very much like in a semi-infinite metal, i.e. the
charge fluctuations on the two surfaces become decoupled. This, of course, is the expected
result, but it is interesting to see that it happens for slabs less then 100 atomic units thick, and
for slightly larger wavevectors (Q > 0.05kF) even for slabs as thin as 50 au. The position of
the surface plasmon shown in figure 5 for Q = 0.05kF strongly confirms this conclusion.

This is an interesting result because it implies, for example, that for the calculations of
electron tunnelling between two semi-infinite metallic electrodes (which, for example, takes
place in systems like an STM) we can simulate the semi-infinite electrode by a slab of finite
(and in fact very small) thickness which is much more convenient for numerical calculations.
For wider slabs we need more points for discretization of the variables z and z ′, but also the
number of occupied energy levels increases, which means that the CPU time needed for such
calculations does not increase linearly with the slab thickness d = L − 2a, but rather scales
approximately as d2. Since the calculation of the Kohn–Sham wavefunctions also becomes
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Figure 4. Collective mode frequencies against the slab thickness for various wavevectors. Dots are
for even modes, and circles for odd modes.
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Figure 5. Surface plasmon peaks for Q = 0.1kF and two thicknesses d = 20a0 and d = 70a0. Full
lines are for even modes, and dashed lines for odd modes.

more time consuming for thicker slabs, it is clear that the numerical effort for the entire
calculation depends tremendously on the slab thickness, and it is therefore very convenient
to use thin slabs.

At lower frequencies below the surface plasmon peaks we observe the usual broad
structures due to the continuum of intra-band electron–hole excitations, but on top of them we
clearly observe (figures 5–7) some weak and quite periodic peaks. Trying to understand their
origin, for example the possible relation to the electron resonances in the potential well (and
therefore their dependence on the slab thickness), we first notice that intra-band transitions, for
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a fixed wavevector Q, are possible for 0 < ω < QvF + Q2

2m (where vF is the Fermi velocity), so
above this region only inter-band transitions contribute. Analysing these oscillations in figure 6,
we changed the scale on the ordinate to show the low-frequency parts of the spectra in detail,
and we came to the conclusion that they are due to the electronic inter-band transitions (as
schematically shown in figure 7).

In order to verify this, in figure 8 we show enlarged relevant parts of the calculated spectra
Sp(Q, ω) compared to the energy differences between the lowest unoccupied state and any of

the occupied states, i.e. lines shown below each peak in the spectrum correspond to ω j = E−E j

h̄ ,
where j = 0, . . . , jM , and E is the lowest eigenenergy above the Fermi level. Clearly,
most of the peaks in the spectra are in very good agreement with the transition frequencies
of corresponding parity. The rest of the peaks correspond either to intra-band transitions (small
ω peaks) or to inter-band transitions to some higher unoccupied state (large ω peaks).

It could be interesting to analyse in more detail how the single-particle excitation spectrum,
which is, in the absence of collective screening, given by

S0
p (Q, ω) = − 1

π

∫

dz dz ′Vp
(
Q, 0, z ′, ω

)
Im χ0

(
Q, z, z′, ω

)
Vp

(
Q, z′, 0, ω

)
,

changes in the presence of the collective screening. In figure 9(a) we show calculated S0
p (Q, ω)

which have extremely large values. This is obviously an unphysical result because S0
p(Q, ω)

correspond to the situation in which the external field freely penetrates throughout the solid.
In order to compare S0

p(Q, ω) with the fully screened Sp(Q, ω) shown in figure 9(c), we can
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approximate this reduction in intensity by dividing:

S0
p → S0

p/ [ε (ω) + 1] .

For the local dielectric function ε(ω) = 1 − ω2
p

ω2 where ωp is the bulk plasmon frequency, this

gives the factor ω2

ω2
p
, as shown in figure 9(b). We see that the single-particle peaks are located

at the same frequencies for all three cases, but from figures 9(b) and (c) we can observe their
modification due to the onset of the collective SP modes.
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(a) unscreened spectrum S0

p(Q, ω); (b) unscreened spectrum reduced by the local dielectric function
ε(ω) + 1; (c) fully screened spectrum Sp(Q, ω).

5. Conclusions

Using the formalism developed in some earlier papers [4–8] and the method for the calculation
of the Kohn–Sham wavefunctions described in [8], we have studied the details of the surface
excitation spectra of metallic thin films, for various thicknesses. We examined both the
collective and the single-particle parts of the spectra and found oscillatory structures that
correspond to the inter-band transitions of metallic electrons. We also showed that collective
surface excitations in slabs wider than 100 au (and for slightly larger plasmon wavevectors even
wider than 50 au) already behave like those in the semi-infinite metal. With the exception of
very small wavevectors (i.e. very long wavelengths), which is not that important from the point
of view of numerical calculations since the long-wavelength limit can be treated analytically,
knowing that very thin slabs can be used to model a semi-infinite metal is very important,
because such systems require much less numerical effort.
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[4] Marušić L and Šunjić M 2001 Phys. Scr. 63 336
[5] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864

Kohn W and Sham L 1965 Phys. Rev. 140 A1133
[6] Eguiluz A G, Campbell D A, Maradudin A A and Wallis R F 1984 Phys. Rev. B 30 5449
[7] Schulte F K 1976 Surf. Sci. 55 427
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